Ecoquest-системы увлажнения воздуха
Верхний баннер
Русский English
Сейчас в корзине
  0 товаров
  Всего 0 у.е.
 Вход для партнеров
На главную
О компании
Продукция
Технологии
Бизнес-партнерство
Контакты и Доставка










Фильм-Сенсация«Плесень».«Она появилась на Земле 200 миллионов лет назад. Она убивает и спасает от смерти. Ее называют »хлебом дьявола« »плевком Бога«. Она сказочно красива, но вызывает

ФОТОКАТАЛИТИЧЕСКИЕ МЕТОДЫ ОЧИСТКИ ВОДЫ И ВОЗДУХА из статьи Е. Н. САВИНОВ

01.11.2010

 

ФОТОКАТАЛИТИЧЕСКИЕ МЕТОДЫ ОЧИСТКИ ВОДЫ И ВОЗДУХА


Выдержки из статьи Е. Н. САВИНОВА, 

Рассмотрены принципы действия фотокатализаторов в процессах глубокого окисления органических соединений в воде и воздухе. Описаны области применения фото-катализаторов:очистка воды и воздуха от oрганических примесей, создание само-очищающихся стекол и покрытий, создание незапотевающих стекол и зеркал.

ВВЕДЕНИЕ

 

На современном этапе развития науки фотокатализ определяют как «изменение скорости или возбуждение химических реакций под действием света в присутствии веществ (фотокатализаторов), которые поглощают кванты света и участвуют в химических превращениях участников реакции, многократно вступая с ними в промежуточные взаимодействия и регенерируя свой химический состав после каждого цикла таких взаимодействий» [ 1]. Рассмотрим это определение на примере реакции дегидрирования этилового спирта в водных растворах

С2Н5ОН---> Н 2+ С2Н40

При комнатной температуре эта реакция не идет. Она может идти под действием света с длиной волны меньше 205 нм, которая соответствует краю поглощения этанола. Но это жесткий ультрафиолет, который практически отсутствует в солнечном спектре, достигающем поверхности Земли. В присутствии же фотокатализаторов, например гетерополикислот 12-го ряда типа H3[PW12O40] или мелкодисперсного ТiO2, эта реакция идет с высоким квантовым выходом под действием света, соответствующего спектру поглощения гетеро-поликислоты (? < 350 нм) или TiO2 (? < 400 нм). А света с такими длинами волн много в солнечном спектре. И таким образом, в данном случае фотокатализаторы возбуждают химическую реакцию или, как говорят, расширяют спектр действия системы, то есть область длин волн света, при облучении которым идет реакция.

Фотокатализ играет важнейшую роль в живой природе. Так, процесс фотосинтеза, обеспечивающий жизнь на Земле, фотокаталитический. В процессах очистки воды и воздуха от органических примесей в качестве фотокатализатора используют исключительно ТiO2.

ПРИНЦИП ДЕЙСТВИЯ TIO2 КАК ФОТОКАТАЛИЗАТОРА

ТiO2 - полупроводниковое соединение. Согласно современным представлениям, в таких соединениях электроны могут находиться в двух состояниях: свободном и связанном. В первом состоянии электроны движутся по кристаллической решетке, образованной катионами Тi4+ и анионами кислорода О- Во втором состоянии — основном электроны связаны с каким-либо ионом кристаллической решетки и участвуют в образовании химической связи. Для перевода электрона из связанного состояния в свободное необходимо затратить энергию не менее 3,2 эВ. Эта энергия может быть доставлена квантами света с длиной волны l < 390 нм. Таким образом, при поглощении света в объеме частицы ТiO2 рождаются свободный электрон и электронная вакансия (в физике полупроводников такая электронная вакансия называется дыркой).
Электрон и дырка — достаточно подвижные образования, и, двигаясь в частице полупроводника, часть из них рекомбинирует, а часть выходит на поверхность и захватывается ею. Схематически процессы, происходящие на частице ТiO2, изображены на рис. 1.
Захваченные поверхностью электрон и дырка являются вполне конкретными химическими частицами. Например, электрон — это, вероятно, Тi3+ на поверхности, а дырка (электронная вакансия) локализуется на решетчатом поверхностном кислороде, образуя О-. Они чрезвычайно реакционноспособны. В терминах окислительно-восстановительных потенциалов реакционная способность электрона и дырки на поверхности ТiO2характеризуется следующими величинами: потенциал электрона ~ -0,1 В, потенциал дырки ~ + 3 В относительно нормального водородного электрода. Иными словами, электрон способен реагировать с кислородом, рождая последовательность реакций:

Рис. 1. Схематическое изображение процессов, идущих на полупроводниковой частице

При этом могут образовываться такие мощные окислители, как О~и ОН-радикал. Вторым возможным маршрутом реакций 

электрона являются 

Но второй маршрут реализуется только в водных растворах и при низких концентрациях кислорода. Основным же каналом исчезновения электрона являются реакции с кислородом.
Дырка реагирует либо с водой

h+H2O--->OH+H+

либо с любым адсорбированным органическим (в некоторых случаях и неорганическим) соединением

ОН -радикал или О~ также способны окислить любое органическое соединение. И таким образом, поверхность ТiOпод светом становится сильнейшим окислителем.
 
ЭФФЕКТИВНОСТЬ ДЕЙСТВИЯ ФОТОКАТАЛИЗАТОРА
 

Эффективность фотокатализатора определяется квантовым выходом реакции и спектром действия фотокатализатора. Квантовый выход фотореакции есть отношение числа образующихся молекул продукта к числу поглощенных квантов света. Для полупроводниковых частиц как фотокатализаторов обычно рассматривают несколько стадий процесса: а) поглощение света — рождение электрон-дырочных пар, б) диффузия электронов и дырок к поверхности полупроводника, в) объемная рекомбинация электронов и дырок, г) поверхностная рекомбинация электронов и дырок, д) полезные реакции электронов и дырок с адсорбированными молекулами.
Квантовый выход реакции Ф можно представить следующим образом:

где hi — доля носителей тока, достигших поверхности, hr — доля носителей тока, достигших поверхности и вступивших в полезную реакцию (избежавших поверхностной рекомбинации).

Для вычисления hi необходимо использовать уравнения, описывающие движения случайно блуждающих частиц. В самом общем случае упомянутые уравнения довольно сложны и не имеют решения в квадратурах. Однако в простых случаях, когда частицы можно считать сферическими, в их объеме отсутствуют электрические поля и скорости процессов рекомбинации и полезной реакции линейны по концентрациям электронов и дырок, решения получены. Несмотря на упрощения, эти решения дают ясное качественное понимание основных закономерностей обсуждаемых процессов. В частности, если размер частицы становится сравним или меньше длины свободного пробега носителя тока (расстояние, которое успевает пройти электрон или дырка до рекомбинации), то hi, приближается к единице.

Из эксперимента известно, что для частиц ТiO2 с радиусом r0 ~ 25 А все носители тока выходят на поверхность. Однако на практике не всегда самыми активными являются порошки ТiO2 с мелкими части-цами. Это можно объяснить анализируя фактор hr :

hr = V*/(Vsr+Vr)

Здесь Vsr — скорость поверхностной рекомбинации, Vr — скорость полезной реакции. Фактор hr может вносить определяющий вклад в Ф.
Обе скорости Vr и Vsr могут заметно изменяться в зависимости от структуры поверхности, то есть от строения и энергетики центров адсорбции и захвата носителей тока. В свою очередь, упомянутые свойства поверхности зависят от кристаллической структуры образца (для ТiO2 наиболее распространены две кристаллические модификации - рутил и анатаз), метода синтеза, последующей процедуры обработки и т.д. или, как говорят, от предыстории образца.

К сожалению, к настоящему моменту нет надежных корреляций, связывающих активность с каким-либо свойством поверхности. Из практики известно, что наибольшей фотокаталитической активностью обладают образцы ТiO2 с кристаллической модификацией анатаза и не содержащие большого числа примесей. И приготовление активного ТiO2 - предмет опыта. Тем не менее практически все, кто занимается прикладным фотокатализом, обладают оригинальными методиками синтеза высокоактивного ТiO2. А образцы серии Degussa Р-25 и Hombikat UV-100 являются продуктами крупнотоннажного производства, высокоактивны как фотокатализаторы и недороги. Это дает возможность использовать фотокатализ на ТiO2 в практике.

С научной точки зрения исследование природы фотокаталитического эффекта, механизма действия фотокатализаторов чрезвычайно интересно. В 1998 году ежемесячно выходило около 150 публикаций, посвященных фотокатализу. Помимо чисто прикладных работ растет число публикаций, в которых сообщается об исследовании фотокаталитических процессов различными физическими методами in situ. Наиболее плодотворны здесь методы ЭПР (электронного парамагнитного резонанса)- и ИК (инфракрасной)-спектроскопии, которые позволяют регистрировать промежуточные продукты превращения органических соединений на поверхности ТiO2 и в некоторых случаях идентифицировать захваченные электрон и дырку. Однако до сих пор невозможно ответить на вопрос, почему близкие по свойствам (близкий размер частиц, одинаковая кристаллическая модификация) образцы ТiO2 могут сильно различаться по фотокаталитической активности.
 

ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ TIO2 КАК ФОТОКАТАЛИЗАТОРА

Очистка воздуха от органических примесей

К настоящему моменту уже показано, что на поверхности ТiO2 могут быть окислены (минерализованы) до СО2 и Н2О практически любые органические соединения [2]. Если в состав соединений входят азот или атомы галогена X, то в продуктах реакции будут наблюдаться HNO3 и НХ. Единственным известным примером соединения, которое не подвергается на поверхности ТiO2 окислению под действием света, является тетрахлорметан, но уже трихлорэтилен разрушается на ТiO2 под действием света с квантовым выходом, превышающим единицу. Это связано с тем, что на поверхности ТiO2 может образовываться атомарный С1, который, десорбируясь с поверхности, стимулирует цепной процесс разложения исходного трихлорэтилена.
На практике любой фотокаталитический очиститель воздуха включает в себя пористый носитель с нанесенным ТiO2, который облучается светом и через который продувается воздух.На  рис 2 показано устройство бытового фотокаталитического очистителя воздуха американской компании GreenTech Environmental

Так, на рис. 3 показано устройство бытового фотокаталитического очистителя воздуха, разработанного Информационно-технологическим институтом (Москва) и Институтом катализа Сибирского отделения РАН.


Рис. 3. Фотокаталитический очиститель воздуха 
Органические молекулы из потока адсорбируются на поверхности фотокатализатора, нанесенного на пористое стекло (фотокаталитический фильтр), и окисляются до углекислого газа и воды под действием света от УФ-лампы. Эффективность действия такого устройства демонстрируется следующим опытом. Очиститель помещают в замкнутый объем (около 190 л) , туда же добавляют ацетон. Наблюдение ведут по убыли ацетона и накоплению СО2.

Кинетические кривые этого процесса представлены на рис. 3.
Рис, 3. Кинетические кривые исчезновения ацетона и накопления СО2 в замкнутом объеме 190 л с фотореактором, аналогичным изображенному на рис. 2
Фактически фотокатализ дает уникальную возможность глубоко окислять органические соединения в мягких условиях, а простота самих устройств позволяет надеяться на прекрасные перспективы использования фотокатализа на практике. Впечатляющие результаты показывают американские разработки GreenTech Environmental в сотрудничестве с RGF GROUP, которые являются лидерами в этой области разработок. В настоящее время к широкому выпуску фотокаталитических очистителей воздуха также приступили такие известные фирмы, как "Toshiba", "Sharp". В России только готовится выпуск оригинальных фотокаталитических очистителей воздуха.
Помимо описанных устройств можно использовать активный ТiO2 и для покрытия стен помещений, что уже практически внедряется в Японии. В этом случае вся поверхность помещения работает как очиститель воздуха. На поверхности ТiO2 под действием света не только разрушаются органические молекулы, но и гибнут вредные микроорганизмы, даже обладающие высокой сопротивляемостью к ультрафиолету.
 

 

САМООЧИЩАЮЩИЕСЯ СТЕКЛА

 

ТiO2 — соединение, прозрачное для видимого света, поэтому тонкие пленки из ТiO2, нанесенные на стекло, незаметны для глаза. А само стекло, покрытое такой пленкой, способно самоочищаться под действием света от органических загрязнений за счет фотокаталитического процесса окисления.
Под действием естественного света или света от ламп дневного света за 1 ч на поверхности может разрушиться слой толщиной 60 А таких органических соединений, как, например, жирные кислоты, выделяющиеся при жарке продуктов. Выпуск таких стекол будет налажен в ближайшее время.
 

НЕЗАПОТЕВАЮЩИЕ ЗЕРКАЛА И СТЕКЛА

Запотевание стекла связано с плохой смачиваемостью поверхности, то есть образованием на поверхности слоя мелких капелек воды, рассеивающих свет. Поверхность стекла или зеркала чаще всего плохо смачивается из-за загрязнения органическими веществами, которые попадают на них из воздуха или при касании, например руками. Тонкая прозрачная пленка фотоактивного ТiO2 под действием света разрушает органические загрязнители, поверхность хорошо смачивается, и вода, попадающая на такую поверхность, не собирается в капельки, а растекается по поверхности, а затем испаряется. В группе автора этой статьи было приготовлено зеркало, ровно половина которого была покрыта пленкой ТiO2. Глазом наличие такой пленки обнаружить невозможно. Было интересно наблюдать, как с одной половины зеркала запотевание исчезает в течение секунды, а на второй половине долго сохраняется, если подышать на это охлажденное зеркало. Вероятно, выпуск таких зеркал и стекол также будет освоен в ближайшем будущем.
 

ИСПОЛЬЗОВАНИЕ ФОТОКАТАЛИЗА ДЛЯ ОЧИСТКИ ВОДЫ ОТ ОРГАНИЧЕСКИХ ПРИМЕСЕЙ

 
Так же, как и в воздухе, в воде органические примеси, попав на поверхность частички ТiO2, могут быть окис-лены до СО2 и Н2О. К настоящему времени показано, что в облучаемых суспензиях ТiO2 этому процессу под-вержены практически любые органические соединения. Однако, как правило, характерные времена полно-го окисления составляют несколько часов, это частично связано с существенно более медленной диффузией органических молекул в воде, чем в воздухе. Типичный коэффициент диффузии в воде составляет около 10-5 см2/с, что по крайней мере на четыре порядка меньше, чем в воздухе при нормальных условиях. По этой причине проточные реакторы с нанесенным ТiO2 малоэффективны. Использование суспензии ТiO2технологически считается не совсем удобным, так как требует после-дующего удаления ТiO2 из потока. В принципе эти проблемы решаются, однако до сих пор неизвестны примеры практического использования проточных фотокаталитических реакторов с гетерогенным катализатором из ТiO2.
Наиболее перспективно использование ТiO2 для очистки сточных вод в накопительных резервуарах и отстойниках. Показано, что пестициды, используемые в сельском хозяйстве, в водоемах разрушаются в течение нескольких месяцев. Добавление небольших количеств безвредного ТiO2 позволяет сократить это время до нескольких дней без использования искусственных источников света, так как процесс идет под действием солнечного света.
Существующие проточные реакторы для очистки воды от органических примесей используют гомоген-ные фотокатализаторы типа солей железа, при этом в воду добавляется и окислитель — перекись водорода. В общих чертах механизм действия такой системы можно описать следующим образом:
Fe2+ + H2O2 Fe3+ + OH- + OH,
Fe2+ + OH Fe3+ + OH-,
OH + H2O2 HO2 + H2O,
HO2 + Fe3+ Fe2+ + H+ + O2,
OH + органическое соединение продукты окисления.Раствор перекиси водорода и соли железа называ-ют реагентом Фентона. Как видно, в ходе процесса разложения перекиси водорода образуется ОН-радикал, который является сильнейшим окислителем. Эта частица и ответственна за окисление органических соединений в растворе. Под действием света скорость про-цесса окисления может увеличиться в десятки и даже сотни раз; система носит название "Фото-Фентон". И хотя механизм действия света еще окончательно не понят, система уже нашла практическое применение из-за простоты, высокой эффективности и экономичности. В частности, технологическое оборудование для очистки сточных вод по методу "Фото-Фентон" поставляется фирмой "RGF ENVIRONMENTAL GROUP ", USA.

ЗАКЛЮЧЕНИЕ

Фотокаталитические технологии очистки воды и воздуха находятся еще на пороге широкого практического использования. Несомненно, что они будут совершенствоваться, но и сейчас уже ясны достоинства, обусловливающие их привлекательность и перспективы. Это простота, экономичность, возможность использования солнечного света. Последнее крайне важно для будущего, когда энергосберегающие технологии, безусловно, будут иметь преимущество.

 <<<
 

Яндекс цитирования